时间:2022-11-25 21:16:52 | 浏览:53
我想大家都对中学学到的原子结构很熟悉,也就是说原子内有个原子核,核外有电子绕着原子核转,而原子核内还有质子和中子。原子核是带正电的,而电子是带负电。
我们都知道同种电荷相互排斥,异种电荷相互吸引。原子核和电子是异种电荷,为什么不会相互吸引?
100多年前,这个问题同样困扰着很多科学家。最早提出原子模型的是汤姆孙,他提出了枣糕模型,在这个模型中:
原子是球形的,正电的物质均匀分布于球体内,而带负电的电子一颗一颗地镶嵌在球面上。
后来,他的学生卢瑟福也提出了一个原子模型,这个模型电子是在原子核核外做圆周运动的,这也被我们称为行星模型。但这个模型有个致命问题,根据麦克斯韦电磁学理论,电子最后还是要被镶嵌到原子核上,简直就是变种的枣糕模型。
再到后来,卢瑟福有个学生叫做波尔,它为了解决这个问题,提出了另外一个原子模型,我们可以叫做太阳系模型。他认为原子内部就像是太阳系一样,原子核就好比太阳,而电子就像行星一样,有一个个轨道,它们在轨道上运动。但是这个模型也不行,因为理论虽然漂亮,但是用到氦元素原子时,就不太灵了。
最后,解决问题的是波尔的学生海森堡,他提出了不确定性原理。在这个理论中,电子在原子核外,呈现电子云的形式。
但问题来了,这样就真的确保了电子可以不掉落到原子核内么?
实际上,你听到这里,还是觉得不太靠谱了。实际上,还存在着两个原因。我们先来说的一个,我们都知道,水是往低处流的。这种现象并不是偶然,说白了它是能量最低原理造成的。万物都是“懒”的,都有个趋势,从能量高的地方往能量低的地方去。那这和这个问题有什么关系呢?
如果电子掉落到原子核内,电子会和质子反应,生成一个中子。(这个过程还会中微子的出现,不过由于中微子质量特别特别小,不影响最终结果,因此,我们就不把它算在内)
那问题来了,这个反应能自发进行么?
实际上并不能,核心原理就在于
“电子+质子的总能量”<“中子的能量”
可能你要问了,它们不都是是物质粒子么?为什么还会有能量这说法?
这就要说到爱因斯坦的质能等价了,这个理论告诉我们一个道理,那就是质量和能量其实是一个东西的两个体现,质量里是有能量的,能量里是有质量的。它们是相互对应的关系,具体的对应就是E=mc^2。因此,我们可以得到微观粒子的能量。
因此,电子和质子的总能量就是0.510 MeV+938.272 MeV=938.782 MeV,这个能量要小于中子的能量。因此,电子和质子并没有办法自发反应,除非有能量的输入。
相反,正是由于中子的能量要大于质子和电子的能量,中子在弱相互作用下,是有一定概率发生衰变,成为一个质子和电子的,这就要远比质子和电子反应生成中子容易的多。
这里,我们再多补充一句,之所以会这样中子的质量(能量)要略大于质子质量(能量),更本质的原因在于构成它们的夸克的种类不一样。
而下夸克的质量是不同于上夸克的,这才导致了质子和中子的质量有些许不同。(下表中,每个格子的左上角第一行就是质量栏)
除了上文说到的问题之外,还存在一个阻拦电子进入原子核的关卡,我们可以理解成一种规则,这个规则就叫做泡利不相容原理。
这就是科学家泡利通过分析实验结果得到的一个理论,具体的表述是,
两个全同的费米子不能处于相同的量子态。(常见的费米子就有电子和夸克)
下图中,左侧这三列内的粒子就是费米子。(当然,还不止这些,像质子和中子也是费米子。)
这定义看起来很唬人,不过你可以大致理解成电子也是需要排座次的,也讲究先来后到,相同状态的电子不能有第二个一摸一样的。这就导致,电子在原子核外要好好排排坐,能都往靠近原子核的方向去挤。
于是,由于泡利不相容原理的存在,就会产生一种量子效应,叫做电子简并态,它们会产生向外的压力,来抵抗把电子往原子核内压的力。
在宇宙中有一种恐怖的天体叫做中子星,它们就是因为电子简并态没有扛住自身的引力,所以,电子就被压到了原子核内。但是中子也有简并态,中子的简并态抵抗住了自身引力。但更为恐怖的黑洞,就是连中子的简并态都没抵抗住自身引力。
最后我们来总结一下,电子和质子的总能量要小于中子的能量,根据能量最低原理,电子和质子不能自发的发生反应。同时,又因为电子简并态的存在,它可以抵抗外来的压力把电子压入原子核内。这是由于两个原因,保证了电子不会掉入到原子核内。
先说答案:电子是波!确实,在我们的固有思维里,会认为电子是粒子。上学时课本上会告诉我们光子既是粒子也是波,这就是波粒二象性,电子也是一样。不过,在量子力学里,并没有粒子的概念。量子力学并没有波粒二象性的概念,也没有说某个粒子既是粒子又是波,
电子,这个东西感觉上离我们的生活很远,可实际上却是无处不在。一部手机、一块石头、一粒尘埃,乃至我们自己的身体之中都有着数不清的电子,那么电子到底是什么呢?它又是由什么所构成的呢?自从人类有了思想,就立志要追寻事物的本源,而要追寻事物的本源,
对于原子的内部结构,很多人都听说过这种说法:电子围绕原子核旋转,就像地球围绕太阳旋转那样。事实上,关于“电子围绕原子核旋转”的说法是不严谨的,电子并不是像地球围绕太阳旋转那样,如果真的如此,由于在电子运动的过程中会向外辐射能量,释放能量,那
在科普的道路上,你不可避免地会遇到光子和电子等微观粒子,而两者或许又是最常见的微观粒子。光子在我们身边无处不在,而电子是组成原子不可或缺的结构组成,万事万物都是由原子构成的,弄清楚光子和电子的本质成为必然。光子和电子都是最基本的微观粒子,它
在宏观的世界里,地球围绕着太阳运动,而在微观的世界里,电子围绕着原子核运动,尽管这两者的运动方式大相径庭,但我们还是经常将地球和电子联系起来,那么问题就来了,如果地球缩小到只有电子那么大,那么在按相同的比例缩小之后,宇宙会有多大?要回答这个
说到波粒二象性,很多人首先会想到的或许就是光。光具有波粒二象性,光是电磁波,但也具有粒子特性,爱因斯坦的光电效应已经验证了这点,而爱因斯坦也因为发现了光电效应获得了诺贝尔物理学奖。何为“光电效应”?简单讲,如果光仅仅是波,它就不可能把电子从
电子在原子核外到底是怎么运行的,其实很多人都搞不清。如今还有很多人误以为电子绕原子运动的类型与地球绕太阳运动一样,这就大错特错了!你可能知道波尔的能级跃迁模型,电子云模型,但是电子到底是怎么运动的,你还是不太清楚。然后咱们先从波尔的能级跃迁
经典物理中,麦克斯韦把光看成是一种电磁波,没有任何粒子的特性;对于实物粒子(如电子、中子、质子等)则被纯粹地认为是一种「微观颗粒」,用于构成更复杂的物质结构,进而构成宏观实体,没有任何波的特性。后来,人们发现诸如 黑体辐射、光电效应、康普顿
这个问题其实不太严谨,并不是说电子一定不会坠落到原子核上,而是正常情况下,电子是不会坠落到原子核上的,否则原子也太不稳定了。不过如果条件合适的话,电子也是可以坠落到原子核上的,但需要很大的能量输入才行。下面通俗地讲解一下为什么会这样。首先来